top of page
Publications: CV
TOC dehalo.jpg
TOC for ACS Chapter, 07102020-2, JC.jpg
TOC for rigid triazole.png
review NMS TOC.jpg
Screen Shot 2020-07-02 at 2.36.10 PM.png
TOC for micelle.jpg
JES for website.jpg
PEG alkyl TOC.png
TOC flex PorZn.png
JMCA for aebsite.jpg
AMI for website.jpg

Publications (*corresponding author; ^undergraduate or high school student

(69). McGrath, J.; Gautam, R. K.; Wang, X.; Jiang, J.* “High-Voltage Catholyte for High-Energy-Density Nonaqueous Redox Flow Battery,” Angew Chem. Int. Ed.​ 2024, e202407906. DOI: 10.1002/anie.202407906 (McGrath and Gautam contributed equally)


(68). Lashgari, A.; Wang, X.; Krause, J.; Sinha, S.;* Jiang, J.* “Electrosynthesis of Verdoheme and Biliverdin Derivatives Following Enzymatic Pathways,” J. Am. Chem. Soc. 2024, 146 (23), 15955–15964. DOI: 10.1021/jacs.4c02847


(67). Chaturvedi, A.; Dash, S.; Sinha, S.; Panetier, J.;* Jiang, J.* “Effect of β-fluorinated porphyrin in changing selectivity for electrochemical O2 reduction,” Materials Today Catalysis,​ 2024, 5, 100053. DOI: 10.1016/j.mtcata.2024.100053


(66). Gautam, R. K.; Wang, X.; Sinha, S.; Jiang, J.* “Triphasic Electrolytes for Membrane-Free High-Voltage Redox Flow Battery,” ACS Energy Lett.​ 2024, 9, 218–225. DOI: 10.1021/acsenergylett.3c02594

TOC (1).jpg

(65). Sinha, S.; Chaturvedi, A.; Gautam, R. K.; Jiang, J.* A Molecular Cu Electrocatalyst Escalates Ambient Perfluorooctanoic Acid Degradation,” J. Am. Chem. Soc. 2023, 145 (50) 27390-27396 DOI: 10.1021/jacs.3c08352 (ChemRxiv2023, DOI: 10.26434/chemrxiv-2023-zn70s).


(64). Sarkar, P.; Dash, S.; Krause, J.; Sinha, S.; Panetier, J.;* Jiang, J.* “Ambient Electroreductive Carboxylation of Unactivated Alkyl Chlorides and Polyvinyl Chloride (PVC) Upgrading,” ChemSusChem 2024, e202400517. DOI: 10.1002/cssc.202400517 (ChemRxiv 2023. DOI: 10.26434/chemrxiv-2023-bczdm)


(63). Sinha, S.; Jiang, J.* “Main Group Elements in Electrochemical Proton and Carbon Dioxide Reduction,” Chem. Commun. 2023, 59, 11767–11779. DOI: 10.1039/D3CC03606E (Invited publication in the Emerging Investigators themed issue)

TOC, MaingroupReview.jpg

(62). Wang, X.; Lashgari, A.; Siwakoti, R.; Gautam, R. K.; McGrath, J.; Sarkar, P.; Naber, G.;^ Chai, J.; Jiang, J.* “Tetrathiafulvalene (TTF) Derivatives as Catholytes for Dual-type Redox Flow Batteries: Molecular Engineering Enables High Energy Density and Cyclability,” J. Mater. Chem. A. 2023, 11, 19056–19065. DOI: 10.1039/D3TA03606E (Wang and Lashgari contributed equally; ^undergraduate student)

Xiao TTF TOC.png

(61). Gautam, R. K.; Wang, X.; Lashgari, A.; Sinha, S.; McGrath, J.; Siwakoti, R.; Jiang, J.* “Development of High-voltage and High-energy Membrane-free Nonaqueous Lithium-based Organic Redox Flow Batteries,” Nat. Commun. 2023, 14, 4753. DOI: 10.1038/s41467-023-40374-y


(60). Devi, N.; Sarkar, P.; Patel, A.;^ Jiang, J.* “Hydrodechlorination of Alachlor Using a Molecular Electrocatalyst,” ChemCatChem 2023, 15, e202201512. DOI: 10.1002/cctc.202201512 (Devi and Sarkar contributed equally; ^high school student)

Final TOC for website.jpg

(59). Wang X.; Gautam, R. K.; Jiang, J.* “Strategies for Improving Solubility of Redox-Active Organic Species in Aqueous Redox Flow Batteries: A Review,” Batter. Supercaps 2022, 5, e202200298. DOI: 10.1002/batt.202200298

thumbnail_TOC 2 1.jpg

(58). Chaturvedi, A.; McCarver, G. A.; Sinha S.; Hix, E. G.; Vogiatzis, K. D.;* Jiang, J.* “A PEGylated Tin-Porphyrin Complex for Electrocatalytic Proton Reduction: Mechanistic Insights into Main-Group Element Catalysis,” Angew. Chem. Int. Ed. 2022, e202206325. DOI: 10.1002/anie.202206325 (Chaturvedi and McCarver contributed equally)

TOC image final.png

(57). Williams, C. K.; McCarver, G. A.; Chaturvedi, A.; Sinha S.; Ang, M;^ Vogiatzis, K. D.;* Jiang, J.* “Electrocatalytic Hydrogen Evolution Using A Molecular Antimony Complex under Aqueous Conditions: An Experimental and Computational Study on Main-Group Element Catalysis,” Chem. Eur. J. 2022, e202201323. DOI: 10.1002/chem.202201323 (Williams and McCarver contributed equally; ^undergraduate student)

toc ckw.png

(56). Wang, X.; Chai, J.;* Zhang, S.; Chen, B.; Chaturvedi, A.; Cui, G.; Jiang, J.*Insights into Indigo K+ Association in a Half-Slurry Flow Battery,” ACS Energy Lett. 2022, 7, 1178–1186. DOI: 10.1021/acsenergylett.2c00165

indigo TOC for web.jpg

(55). Sinha, S.; Williams, C. K.; Jiang, J.*Outer-Coordination Sphere in Multi-H+/Multi-e– Molecular Electrocatalysis,” iScience 2022, 25, 103628. DOI: 10.1016/j.isci.2021.103628 (invited Perspective)

TOC, higher coord, 121121, CKW.png

(54). Wang, X.; Lashgari, A.; Chai, J.;*  Jiang, J.* “A Membrane-Free, Aqueous/Nonaqueous Hybrid Redox Flow Battery,” Energy Storage Mater. 2022, 45, 1100–1108. DOI: 10.1016/j.ensm.2021.11.008(Wang and Lashgari contributed equally)

TOC 2 1.jpg

(53). Wang, X.; Chai, J.; Devi, N.; Lashgari, A.; Chaturvedi, A.; Jiang, J.* “Two-Electron-Active Tetracyanoethylene for Application in Nonaqueous Redox Flow Batteries,” J. Mater. Chem. A 2021, 9, 13867–13873.  DOI: 10.1039/D1TA01365C. Selected as front cover (Wang and Chai contributed equally)


(52). Williams, C. K.; McCarver, G. A.; Lashgari, A.; Vogiatzis, K. D.;* Jiang, J.*Electrocatalytic Dechlorination of Dichloromethane in Water Using a Heterogenized Molecular Copper Complex,” Inorg. Chem. 2021, 60, 4915–4923. DOI: 10.1021/acs.inorgchem.0c03833

Rearranged TOC, 031021-2.png

(51). Devi, N.; Williams, C. K.; Chaturvedi, A.; Jiang, J.*Homogeneous Electrocatalytic CO2 Reduction Using a Porphyrin Complex with Flexible Triazole Units in the Second Coordination Sphere,” ACS Appl. Energy Mater. 2021, 4, 3604–3611. DOI: 10.1021/acsaem.1c00027

FePEG8T ACS AEM 3102021.jpg

(50). Chai, J.; Lashgari, A.; Eisenhart, A. E.; Wang, X.; Beck, T. L.;* Jiang, J.*Biphasic, Membrane-Free Zn/Phenothiazine Battery. Effects of Hydrophobicity of Redox Materials on Cyclability,” ACS Mater. Lett. 2021, 3, 337–343. DOI: 10.1021/acsmaterialslett.1c00061 


(49). Chaturvedi, A.; Williams, C. K.; Devi, N.; Jiang, J.*Effects of Appended Poly(ethylene glycol) on Electrochemical CO2 Reduction by an Iron Porphyrin Complex,” Inorg. Chem. 2021, 60, 3843–3850. DOI: 10.1021/acs.inorgchem.0c03612


(48). Wang, X.; Chai, J.; Lashgari, A.; Jiang, J.* “Azobenzene-Based Low-Potential Anolyte for Nonaqueous Organic Redox Flow Battery,ChemElectroChem 2021, 8, 83–89. DOI: 10.1002/celc.202001035 (Wang and Chai contributed equally)


(47). Wang, X.; Chai, J.; Jiang, J.*Redox Flow Batteries Based on Insoluble Redox-Active Materials. A Review,” Nano Mater. Sci. 2021, 3, 17–24. DOI: 10.1016/j.nanoms.2020.06.003 (invited review; Wang and Chai contributed equally)

review NMS TOC.jpg

(46). Williams, C. K.; Lashgari, A.; Devi, N.; Ang, M.;^ Chaturvedi, A.; Dhungana, P.; Jiang, J.* Hydrodechlorination of Dichloromethane by a Metal-Free Triazole-Porphyrin Electrocatalyst: Demonstration of Main-Group Element Electrocatalysis,” Chem. Eur. J. 2021, 27, 6240–6246. DOI: 10.1002/chem.202005012.  (ChemRxiv2020, DOI: 10.26434/chemrxiv.12762266.v1) ^undergraduate student

TOC dehalo.jpg

(45). Chai, J.; Lashgari, A.; Jiang, J.*Electroactive Materials for Next-Generation Redox Flow Batteries: from Inorganic to Organic,” in Clean Energy Materials; Lang, Q.; Fan, L.-S. Eds.; American Chemical Society, Washington, DC. 2020, p1–47. DOI: 10.1021/bk-2020-1364.ch001.

TOC for ACS Chapter, 07102020-2, JC.jpg

(44). Williams, C. K.; Lashgari, A.; Tomb, J. A.;^ Chai, J.; Jiang, J.*Atropisomeric Effects of Second Coordination Spheres on Electrocatalytic CO2 Reduction,” ChemCatChem 2020, 12, 4886–4892. DOI: 10.1002/cctc.202000909; ^undergraduate student

TOC for rigid triazole.png

(43). Hu, G.; Jiang, J.;* Kelly, H. R.; Matula, A. J.; Wu, Y.; Romano, N.; Mercado, B. Q.; Wang, H.;* Batista, V. S.;* Crabtree, R. H.; Brudvig, G. W.* “Surprisingly Big Linker-Dependence of Activity and Selectivity in CO2 Reduction by an Iridium(I) Pincer Complex,” Chem. Commun. 2020, 56, 9126–9129. DOI: 10.1039/D0CC03207G (Hu and Jiang contributed equally)

Screen Shot 2020-07-02 at 2.36.10 PM.png

(42). Chai, J.; Wang, X.; Lashgari, A.; Williams, C. K.; Jiang, J.*A pH-Neutral, Non-Corrosive, Aqueous Redox Flow Battery with a 3600-Cycle Lifetime: Micellization-Enabled Ultrastability and Crossover Suppression,” ChemSusChem 2020, 13, 4069–4077. DOI: 10.1002/cssc.202001286 (Chai and Wang contributed equally)

TOC for micelle.jpg

(41). Chai, J.; Lashgari, A.; Wang, X.; Jiang, J.*Extending the Redox Potentials of Metal-Free Anolytes: towards High Energy Density Redox Flow Batteries,” J. Electrochem. Soc. 2020, 167, 100556. DOI: 10.1149/1945-7111/ab9e84 (Chai and Lashgari contributed equally)

JES for website.jpg

(40). Williams, C. K.; Lashgari, A.; Chai, J.; Jiang, J.* “Enhanced Molecular CO2 Electroreduction Enabled with a Flexible Hydrophilic Channel for Relay Proton Shuttling,” ChemSusChem 2020, 13, 3412–3417. DOI: 10.1002/cssc.202001037

PEG alkyl TOC.png

(39). Lashgari, A.; Williams, C. K.; Glover, J. L.; Wu, Y.; Chai, J.; Jiang, J.*Enhanced Electrocatalytic Activity of a Zinc Porphyrin for CO2 Reduction: Cooperative Effects of Triazole Units in the Second Coordination Sphere,” Chem. Eur. J. 2020, 26, 16774–16781, DOI: 10.1002/chem.202002813 (Lashgari and Williams contributed equally)

TOC flex PorZn.png

(38). Chai, J.; Lashgari, A.; Wang, X.; Williams, C. K.; Jiang, J.* “All-PEGylated Redox-Active Metal-Free Organic Molecules in Non-Aqueous Redox Flow Battery,” J. Mater. Chem. A 2020, 8, 15715–15724. DOI: 10.1039/D0TA02303E (Invited publication in the Emerging Investigators themed issue)

JMCA for aebsite.jpg

(37). Chai, J.; Lashgari, A.; Cao, Z.; Williams, C. K.; Wang, X.; Dong, J.; Jiang, J.* “PEGylation-Enabled Extended Cyclability of a Non-Aqueous Redox Flow Battery,” ACS Appl. Mater. Interfaces 2020, 12, 15262–15270. DOI: 10.1021/acsami.0c01045 (Chai and Lashgari contributed equally)

AMI for website.jpg

Prior to UC

(36). Jing, H.; Liu, S.; Jiang, J.; Tran, V.; Rong, J.; Wang, P.; Lindsey, J. S. "Meso Bromination and Derivatization of Synthetic Bacteriochlorins," New J. Chem. 2022, 46, 5556–5572. DOI: 10.1039/D1NJ05853C


(35). Jing, H.; Wang, P.; Chen, B.; Jiang, J.; Vairaprakash, P.; Liu, S.; Rong, J.; Chen, C.-Y.; Nalaoh, P.; Lindsey, J. S. "Synthesis of Bacteriochlorins Bearing Diverse β-Substituents," New J. Chem. 2022, 46, 5534–5555. DOI: 10.1039/d1nj05852e

(34). Fujita, H.; Jing, H.; Krayer, M.; Allu, S.; Veeraraghavaiah, G.; Wu, Z.; Jiang, J.; Diers, J. R.; Magdaong, N. C. M.; Mandal, A. K,; Ray, A.; Niedwiedzki, D. M.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. “Annulated Bacteriochlorin for Near-Infrared Photophysical Studies,” New J. Chem. 2019, 43, 7209–7232. DOI: 10.1039/C9NJ01113G

(33). Materna, K. L.; Jiang, J.; Crabtree, R. H.; Brudvig, G. W. “Silatrane Anchors for Metal Oxides, Optimization for Potential Photocatalytic and Electrocatalytic Applications,” ACS Appl. Mater. Interfaces 2019, 9, 5602–5609. DOI: 10.1021/acsami.8b04138

(32). Jiang, J.; Matula, A.; Swierk, J.; Romano, N.; Wu, Y.; Batista, V.; Schmuttenmaer, C. A.; Crabtree, R. H.; Lindsey, J. S.; Wang, H.; Brudvig, G. W. “Unusual Stability of a Bacteriochlorin Electrocatalyst under Reductive Conditions. A Case Study on CO2 Conversion to CO,” ACS Catal. 2018, 8, 10131–10136. DOI: 10.1021/acscatal.8b02991

(31). Jiang, J.; Spies, J. A.; Swierk, J. R.; Matula, A. J.; Regan, K. P.; Romano, N.; Brennan, B. J.; Crabtree, R. H.; Schmuttenmaer, C. A.; Batista, V. S.; Brudvig, G. W. “Direct Interfacial Electron Transfer from High-Potential Porphyrins into Semiconductor Surfaces: A Comparison of Linkers and Anchoring Groups,” J. Phys. Chem. C 2018, 122, 13529–13539. DOI: 10.1021/acs.jpcc.7b12405 (Jiang and Spies contributed equally)

(30). Weng, Z.; Wu, Y.; Wang, M.; Jiang, J.; Yang, K.; Huo, S.; Wang, X.-F.; Ma, Q.; Brudvig, G. W.; Batista, V. S.; Liang, Y.; Feng, Z.; Wang, H. “Active Sites of Cu-Complex Catalytic Materials for Electrochemical Carbon Dioxide Reduction,” Nat. Commun. 2018, 9, 415. DOI: 10.1038/s41467-018-02819-7

(29). Materna, K. L.; Jiang, J.; Regan, K. P.; Schmuttenmaer, C. A.; Brudvig, G. W. “Optimization of Photoanodes for Photocatalytic Water-Oxidation Using a Heterogenized Iridium Catalyst and a High-Potential Porphyrin Photosensitizer,” ChemSusChem 2017, 10, 4526–4534. DOI: 10.1002/cssc.201701693

(28). Weng, Z.; Zhang, X.; Wu, Y.; Huo, S.; Jiang, J.; Liu, W.; He, G.; Liang, Y.; Wang, H. “Self-Cleaning Catalyst Electrodes for Stabilized CO2 Reduction to Hydrocarbons,” Angew. Chem. Int. Ed. 2017, 56, 13135–13139. DOI: 10.1002/anie.201707478

(27). Wu, Y.; Jiang, J.; Weng, Z.; Wang, M.; Broere, D. L. J.; Zhong, Y.; Brudvig, G. W.; Feng, Z.; Wang, H. “Electroreduction of CO2 Catalyzed by a Heterogenized Zn-Porphyrin Complex with a Redox-Innocent Metal Center,” ACS Cent. Sci. 2017, 3, 847–852. DOI: 10.1021/acscentsci.7b00160 (Wu, Jiang, and Weng contributed equally)

(26). Jiang, J.; Materna, K. L.; Hedström, S.; Yang, K. R.; Batista, V.; Crabtree, R. H.; Brudvig, G. W. “Molecular Antimony Complexes for Electrocatalysis: Activity of a Main Group Element in Proton Reduction,” Angew. Chem. Int. Ed. 2017, 56, 9111–9115. DOI: 10.1002/anie.201704700 (Jiang, Materna, and Hedström contributed equally)

(25). Mi, Y.; Liu, W.; Wang, Q.; Jiang, J.; Brudvig, G. W.; Zhou, H.; Wang, H. “Pomegranate-Structured Sulfur Cathode Material with Triple Confinement of Lithium Polysulfides for High-Performance Lithium-Sulfur Batteries,” J. Mater. Chem. A 2017, 5, 11788–11793. DOI: 10.1039/C7TA00035A

(24). Liu, W.; Jiang, J.; Yang, K. R.; Mi, Y.; Kumaravadivel, P.; Zhong, Y.; Fan, Q.; Weng, Z.; Wu, Z.; Cha, J. J.; Zhou, H.; Batista, V. S.; Brudvig, G. W.; Wang, H. “An Ultrathin Dendrimer-Graphene Oxide Composite Film for Stable Cycling Lithium-Sulfur Batteries,” Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 3578–3583. DOI: 10.1073/pnas.1620809114 (Liu, Jiang, Yang, and Mi contributed equally)

(23). Mancini, J. A.; Kodali, G.; Jiang, J.; Reddy, K. R.; Lindsey, J. S.; Bryant, D. A.; Dutton, P. L.; Moser, C. C. “Multi-step Excitation Energy Transfer Engineered in Genetic Fusions of Natural and Synthetic Light-Harvesting Proteins,” J. R. Soc. Interface 2017, 14, 20160896. DOI: 10.1098/rsif.2016.0896

(22). Jiang, J.; Swierk, J. R.; Materna, K. L.; Hedström, S.; Lee, S.; Crabtree, R. H.; Schmuttenmaer, C. A.; Batista, V. S.; Brudvig, G. W. “High Potential Porphyrins for Photoelectrochemical Applications Supported on SnO2- and TiO2- Surfaces,” J. Phys. Chem. C 2016, 120, 28971–28982. DOI: 10.1021/acs.jpcc.6b10350

(21). Mi, Y.; Liu, W.; Yang, K. R.; Jiang, J.; Fan, Q.; Weng, Z.; Zhong, Y.; Wu, Z.; Brudvig, G. W.; Batista, V. S.; Zhou, H.; Wang, H. “Ferrocene-Promoted Long-Cycle Lithium-Sulfur Batteries,” Angew. Chem. Int. Ed. 2016, 55, 14818–14822. DOI: 10.1002/anie.201609147

(20). Jiang, J.; Crabtree, R. H.;  Brudvig, G. W. “One-Step Trimethylstannylation of Benzyl and Alkyl Halides,” J. Org. Chem. 2016, 81, 9483–9488. DOI: 10.1021/acs.joc.6b01883

(19). Swierk, J. R.; Regan, K. P.; Jiang, J.; Brudvig, G. W.; Schmuttenmaer, C. A. “Rutile TiO2 as an Anode Material for Water-Splitting Dye-Sensitized Photoelectrochemical Cells,ACS Energy Lett. 2016, 1, 603–606. DOI: 10.1021/acsenergylett.6b00279

(18). Jiang, J.; Swierk, J. R.; Hedstrom, S.; Matula, A. J.; Crabtree, R. H.; Batista, V. S.; Schmuttenmaer, C. A.; Brudvig, G. W. “Molecular Design of Light-Harvesting Photosensitizers: Effect of Varied Linker Conjugation on Interfacial Electron Transfer,” Phys. Chem. Chem. Phys. 2016, 18, 18678–18682. DOI: 10.1039/C6CP04377A (Jiang and Swierk contributed equally)

(17). Weng, Z.; Jiang, J.; Wu, Y.; Wu, Z.; Guo, X.; Materna, K. L.; Liu, W.; Batista, V. S.; Brudvig, G. W.; Wang, H. “Electrochemical CO2 Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution,” J. Am. Chem. Soc. 2016, 138, 8076–8079. DOI: 10.1021/jacs.6b04746 (Weng and Jiang contributed equally)

(16). Zhang, N.; Jiang, J.; Liu, M.; Taniguchi, M.; Mandal, A. K.; Evans-Storms, R. B.; Pitner, J. B.; Bocian, D. F.; Holten, D.; Lindsey, J. S. “Bioconjugatable, PEGylated Hydroporphyrins for Photochemistry and Photomedicine. Narrow-Band, Near-Infrared-Emitting Bacteriochlorins,” New J. Chem. 2016, 40, 7750–7767. DOI: 10.1039/C6NJ01155A


(15). Jiang, J.; Yang, E.; Reddy, K. R.; D. M. Niedzwiedzki; C. Kirmaier; D. F. Bocian; D. Holte; Lindsey, J. S. “Synthetic Bacteriochlorins Bearing Polar Motifs (Carboxylate, Phosphonate, Ammonium and a short PEG). Water-Solubilization, Bioconjugation, and Photophysical Properties,” New J. Chem. 2015, 39, 5694–5714. DOI: 10.1039/C5NJ00759C


(14). Zhang, N.; Reddy, K. R.; Jiang, J.; Taniguchi, M.; Sommer, R. D. Lindsey, J. S. “Elaboration of an Unexplored Substitution Site in Synthetic Bacteriochlorins,” J. Porphyrins Phthalocyanines 2015, 19, 887–902. DOI: 10.1142/S1088424615500534


(13). Jiang, J.; Taniguchi, M.; Lindsey, J. S. “Near-Infrared Tunable Bacteriochlorins Equipped for Bioorthogonal Labeling,” New J. Chem. 2015, 39, 4534–4550. DOI: 10.1039/C5NJ00209E


(12). Jiang, J.; Chen, C.-Y.; Zhang, N.; Vairaprakash, P.; Lindsey, J. S. “Polarity-Tunable and Wavelength-Tunable Bacteriochlorins Bearing a Single Carboxylic Acid or NHS Ester. Use in a Protein Bioconjugation Model System,” New J. Chem. 2015, 39, 403–419. DOI: 10.1039/C4NJ01340A


(11). Harris, M. A.; Sahin, T.; Jiang, J.; Vairaprakash, P.; Loach, P. A.; Niedzwiedzki, D. M.; Kirmaier, C.; Loach, P. A.; Bocian, D. F.; Holten, D.; Lindsey, J. S. “Enhanced Light-Harvesting Capacity by Micellar Assembly of Free Accessory Chromophores and LH1-like Antennas,” Photochem. Photobiol. 2014, 90, 1264–1276. DOI: 10.1111/php.12319


(10). Jiang, J.; Reddy, K. R.; Pavan, M. P.; Lubian, E.; Bocian, D. F.; Holten, D.; Parkes-Loach, P. S.; Loach, P. A.; Lindsey, J. S. “Amphiphilic, Hydrophilic, or Hydrophobic Synthetic Bacteriochlorins in Biohybrid Light-Harvesting Architectures. Consideration of Molecular Designs,” Photosynth. Res. 2014, 122, 187–202. DOI: 10.1007/s11120-014-0021-9

(9). Harris, M. A.; Jiang, J.; Niedzwiedzki, D. M.; Jiao, J.; Taniguchi, M.; Kirmaier, C.; Loach, P. A.; Bocian, D. F.; Lindsey, J. S.; Holten, D.; Parkes-Loach, P. S. “Versatile Design of Biohybrid Light-Harvesting Architectures to Tune Location, Density and Spectral Coverage of Attached Synthetic Chromophores for Enhanced Energy Capture,” Photosynth. Res. 2014, 121, 35–48. DOI: 10.1007/s11120-014-9993-8


(8). Jiang, J.; Vairaprakash, P.; Reddy, K. R.; Sahin, T.; Pavan, M. P.; Lubian, E.; Lindsey, J. S. “Hydrophilic Tetracarboxy Bacteriochlorins for Photonics Applications,” Org. Biol. Chem. 2014, 12, 86–103. DOI: 10.1039/C3OB41791C


(7). Harris, M. A.; Parkes-Loach, P. S.; Springer, J. W.; Jiang, J.; Martin, E. C.; Qian, P.; Jiao, J.; Niedzwiedzki, D. M.; Kirmaier, C.; Olsen, J. D.; Bocian, D. F.; Holten, D.; Hunter, C. N.; Lindsey, J. S.; Loach, P. A. “Integration of Multiple Chromophores with Native Photosynthetic Antennas to Enhance Solar Energy Capture and Delivery,” Chem. Sci. 2013, 4, 3924–3933. DOI: 10.1039/C3SC51518D


(6). Reddy, K. R.; Jiang, J.; Krayer, M.; Harris, M. A.; Springer, J. W.; Yang, E.; Jiao, J.; Niedzwiedzki, D. M.; Pandithavidana, D.; Parkes-Loach, P. S.; Kirmaier, C.; Loach, P. A.; Bocian, D. F.; Holten, D.; Lindsey, J. S. “Palette of Lipophilic Bioconjugatable Bacteriochlorins for Construction of Biohybrid Light-Harvesting Architectures,” Chem. Sci. 2013, 4, 2036–2053. DOI: 10.1039/C3SC22317E

(5). Leng, B.; Jiang, J.; Tian, H. “A Mesoporous Silica Supported Hg2+ Chemodosimeter,AIChE J. 2010, 56, 2957–2964. DOI: 10.1002/aic.12211

(4). Jiang, J.; Xiao, X.; Zhao, P.; Tian, H. “Colorimetric Naked-Eye Recognizable Anion Sensors Synthesized via RAFT Polymerization,” J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 1551–1556. DOI: 10.1002/pola.23922


(3). Leng, B.; Zou, L,; Jiang, J.; Tian, H. “Colorimetric Detection of Mercuric Ion (Hg2+) in Aqueous Media Using Chemodosimeter-functionalized Gold Nanoparticles,” Sensor. Actuat. B-chem. 2009, 140, 162–169. DOI: 10.1016/j.snb.2009.03.074


(2). Zhao, P.; Jiang, J.; Leng, B.; Tian, H. “Polymer Fluoride Sensors Synthesized by RAFT Polymerization,” Macromol. Rapid Commun. 2009, 30, 1715–1718.  (Zhao and Jiang contributed equally) DOI: 10.1002/marc.200900318


(1). Jiang, J.; Leng, B.; Xiao, X.; Zhao, P.; Tian, H. “Off-On-Off” Fluorescent Proton Switch Synthesized by RAFT Polymerization,” Polymer 2009, 50, 5681–5684. DOI: 10.1016/j.polymer.2009.10.003

bottom of page